Published February 9, 2026 | Version 3.0
Dataset Open

SuperDARN data in netCDF format (2021-Jun)

  • 1. JHU/APL

Description

2021-Jun SuperDARN radar data in netCDF format. These files were produced using version 3.0 of the public FitACF algorithm, using the AACGM v2 coordinate system. Cite this dataset if using our data in a publication.

The RST is available here: https://github.com/SuperDARN/rst

The research enabled by SuperDARN is due to the efforts of teams of scientists and engineers working in many countries to build and operate radars, process data and provide access, develop and improve data products, and assist users in interpretation. Users of SuperDARN data and data products are asked to acknowledge this support in presentations and publications. A brief statement on how to acknowledge use of SuperDARN data is provided below.

Users are also asked to consult with a SuperDARN PI prior to submission of work intended for publication. A listing of radars and PIs with contact information can be found here: (SuperDARN Radar Overview)

Recommended form of acknowledgement for the use of SuperDARN data:

'The authors acknowledge the use of SuperDARN data. SuperDARN is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom and the United States of America.'

Files

20210601.nc.zip

Files (7.5 GB)

Name Size Download all
md5:94296ae6fb586bd8971c51a697aa48b9
315.9 MB Preview Download
md5:4c9b915c2252486a19004231d56af7ca
285.1 MB Preview Download
md5:f3751cad430f9115995e829b42a20269
277.2 MB Preview Download
md5:6e58723e66c7b8711d455380f2c26afc
250.8 MB Preview Download
md5:3f25ded24447963470d1086ba13d5afa
280.0 MB Preview Download
md5:22e369be89f0e2780e74702ec4330bfe
281.6 MB Preview Download
md5:f5463ba0b9a75b50662802d050bdd3e0
285.9 MB Preview Download
md5:25ace5e418f322e522abcc421b087cd4
208.5 MB Preview Download
md5:2a3de53a0f2965c19864a627fb48c461
243.3 MB Preview Download
md5:9f11c5653dece5eed8cefc1fb264940a
261.7 MB Preview Download
md5:eae86e65fac5cae961d38caa404c8fb7
204.2 MB Preview Download
md5:efa22019865aea80862919bb9f85565f
202.2 MB Preview Download
md5:9802bc243ed5fca21e8f2706e4ff05d4
217.3 MB Preview Download
md5:31ce410674415035b420251f3ce8cf30
231.2 MB Preview Download
md5:2dfc685a392bb0d9251714d769657b57
270.4 MB Preview Download
md5:5412fd9751d5129a6a81581a584f4e6e
146.7 MB Preview Download
md5:6a7d9c1d43272d91795aebf89f3fbb1b
190.3 MB Preview Download
md5:b8bf788cb333b09354934fc61e97d0b2
179.5 MB Preview Download
md5:fbf9df3c0e48e84f83d84432249eb8ce
199.0 MB Preview Download
md5:cac9d7d0f34df2beecd9c1a5ac3c1bcf
215.0 MB Preview Download
md5:2e8f882b6ffcc7272fc5d4185b0f878a
243.1 MB Preview Download
md5:7064794490dc9fd65eaf44940351d1ae
202.4 MB Preview Download
md5:7383e4513066029d566cde503064d8df
243.2 MB Preview Download
md5:a71e0d138220edfe073457e8140015ae
293.1 MB Preview Download
md5:26ff545563a0cfde78900649babffa59
262.7 MB Preview Download
md5:f60b653fe147d805e6d41ed7014a4d70
281.7 MB Preview Download
md5:366fa72e3b32873243cff480e3c6575d
278.1 MB Preview Download
md5:fb40f075ee71f95de1a9ec23e7ee18d2
311.7 MB Preview Download
md5:11029dccdd8a77b606713b5b026e3d33
309.9 MB Preview Download
md5:50c27029dc12ccabb16d615f2b1717a8
282.6 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.20383/102.0677 (DOI)